Contoh Soal Cerita Pertidaksamaan Linear 2 Variabel

Contoh Soal Cerita Pertidaksamaan Linear 2 Variabel

contoh soal cerita sistem pertidaksamaan linear 2 variabel​

Daftar Isi

1. contoh soal cerita sistem pertidaksamaan linear 2 variabel​


Jawaban:

Sistem pertidaksamaan linear dua variabel adalah pertidaksamaan yang terdiri atas dua variabel. Nah, bentuk umum dari pertidaksamaan linear dua variabel ini ditulis dengan lambang x dan y. Artikel ini akan memberikan beberapa contoh soal pertidaksamaan linear dua variabel.

Berikut ini adalah bentuk umum penulisan pertidaksamaan linear dua variabel:

ax + by ≤ c;

ax + by ≥ c;

ax + by < c;

ax + by > c;

Keterangan:

a, b, c adalah bilangan asli.

a dan b adalah koefisien.

c adalah konstanta.

x dan y adalah variabel.

Contoh:

2x + 5y ≥ 7

Jawaban: Daerah penyelesaian ada di kanan dan pada garis 2x + 5y = 7.

-3x + 8y ≥ 15

Jawaban:

= -3x + 8y ≥ 15 dikali -1 agak koefisien x menjadi positif

= 3x - 8y ≤ -15

= Daerah penyelesaian di kiri dan pada garis -3x + 8y = 15

Contoh: 4x + 8y ≥ 16

Jawaban:

1. Mencari nilai x

= Jika y = 0, maka menjadi 4x = 16

= x = 16/4

= x = 4

2. Mencari nilai y

= Jika x = 0, maka menjadi 8y = 16

= y = 16/8

= y = 2

3. Gambarlah grafik dengan titik x = 4 dan y = 2 atau (4, 2).

4. Arsir daerah sesuai dengan tanda pertidaksamaan


2. contoh soal cerita pertidaksamaan linear 2 variabel beserta penyelesaiannya


Kelas : 12
Mapel : Matematika
Kategori : Bab 2 - Program Linier
Kata Kunci : pertidaksamaan linear dua variabel, program linier, contoh
Kode : 12.2.2 [Kelas 12 Matematika Bab 2 - Program Linier]

Pembahasan :
Bentuk umum pertidaksamaan linier dua variabel adalah 
ax + by + c > 0,
ax + by + c < 0,
ax + by + c ≥ 0,
ax + by + c ≤ 0,
dengan a dan b tidak nol.

Program linear adalah suatu cara untuk memecahkan suatu persoalan tertentu dimana model matematika terdiri atas pertidaksamaan-pertidaksamaan linear yang mempunyai banyak penyelesaian. Dari semua hasil yang mungkin, satu atau lebih memberikan hasil yang paling baik (penyelesaian optimal).

Contoh :
1. https://brainly.co.id/tugas/403136
2. https://brainly.co.id/tugas/8774805
3. https://brainly.co.id/tugas/1119296

Semangat!

Stop Copy Paste!

3. contoh soal cerita pertidaksamaan linear 2 variabel beserta penyelesaiannya​


Harga 2 baju dan 5 celana Rp. 410.000,00. Sedangkan 3 baju dan 2 celana Rp. 340.000,00. Berapa harga sebuah baju dan 2 celana?

Jawab :

Dimisalkan :

Harga 1 baju = x

Harga 1 celana = y

Maka

2x + 5y = 410.000 | x2

3x + 2y = 340.000 | x5

---------------------------------

-11x = -880.000

x = -880.000/-11

x = 80.000

Substitusikan x = 80.000 pada

2x + 5y = 410.000

2(80.000) + 5y = 410.000

160.000 + 5y = 410.000

5y = 410.000 - 160.000

5y = 250.000

y = 250.000/5

y = 50.000

x + 2y = 80.000 + 2(50.000)

x + 2y = 80.000 + 100.000

x + 2y = 180.000

Jadi harga 1 baju dan 2 celana adalah

Rp. 180.000


4. 1 Menentukan anggota-anggota dari himpunan (Himpunan) Himpunan bilangan asli kurang dari 52 Menentukan anggota himpunan A irisan anggota B komplemen (Himpunan) Tiga himpunan S, A dan B3 Menentukan banyaknya anggota himpunan A (Himpunan) Himpunan bilangan bulat antara 1 dan 104 Menentukan kelipatan anggota himpunan (Himpunan Kelipatan) 5 antara 20 dan 1005 Menentukan banyaknya himpunan bagian yang mungkin dari himpunan tersebut (Himpunan) Himpunan dengan 5 anggota6 Menentukan irisan kedua himpunan (Himpunan) Dua himpunan, himpunan bilangan prima dan himpunan bilangan ganjil7 Menentukan komplemen dari A gabung B (Himpunan) Tiga himpunan S, A dan B8 Menentukan banyaknya anggota dari A gabung B (Himpunan) Banyaknya anggta himpunan A, B dan A iris B9 Menentukan banyaknya himpunan bagian yang beranggotakan 2 elemen (Himpunan) Himpunan bagian10 Menentukan banyaknya siswa yang gemar kedua ekskul tersebut (Himpunan) Contoh kasus siswa peserta ekskul Pramuka dan PMR11 Menentukan operasi dari daerah yang diarsir. (Himpunan) Diagram venn dengan himpunan beririsan12 Menentukan peserta yang mengikuti lomba cerpen saja. (Himpunan) Contoh kasus siswa peserta lomba baca puisi dan lomba menulis cerpen13 Menyederhanakan bentuk aljabar tersebut (Bentuk Aljabar) Bentuk aljabar dengan beberapa suku14 Menentukan koefisien dari salah satu suku yang ada (Bentuk Aljabar) Bentuk aljabar dengan beberapa suku15 Menentukan banyak suku pada bentuk aljabar tersebut (Bentuk Aljabar) Beberapa bentuk aljabar16 Diberikan beberapa bentuk aljabar. Peserta didik dapat menentukan bentuk aljabar yang memiliki dua suku sejenis (Bentuk Aljabar) Beberapa bentuk aljabar17 Menyederhanakan penjumlahan bentuk aljabar tersebut. (Bentuk Aljabar) Bentuk-bentuk aljabar18 Menentukan hasil perkalian bentuk aljabar (Bentuk Aljabar) Perkalian19 Menentukan hasil perkalian bentuk aljabar (Bentuk Aljabar) Dua suku bentuk aljabar yang sama20 Menyederhanakan perkalian aljabar tersebut (Bentuk Aljabar) Dua bentuk aljabar yg berbeda21 Menentukan KPK dari ke tiga bentuk aljabar tersebut (Bentuk Aljabar) Tiga bentuk aljabar yg berbeda22 Menentukan hasil akhir dari bentuk aljabar tersebut (Bentuk Aljabar) Bentuk aljabar dan nilai dari variabel-variabelnya23 Menyederhanakan pembagian dua bentuk aljabar tersebut (Bentuk Aljabar) Dua bentuk aljabar yg berbeda24 Menentukan panjang sisi dari persegi panjang tersebut. (bentuk Aljabar) Persegi panjang diketahui luas dan lebarnya25 Menentukan persamaan linear satu variabel (Persamaan linear satu variabel) bentuk-bentuk persamaan26 Diberikan persamaan linear dg variabel x. Peserta didik dapat menentukan nilai x yang benar (Persamaan linear satu variabel) Persamaan linear27 Menentukan penyelesaian PLSV (Persamaan linear satu variabel) Persamaan linear dg variabel x 28 Menentukan penyelesaian PLSV (Persamaan linear satu variabel( Persamaan linear dg variabel x 29 Menentukan harga sebuah penggaris dan sebuah pensil. (Persamaan linear satu variabel) Aplikasi Persamaan linear30 Menentukan nilai x (Persamaan linear satu variabel) Aplikasi Persamaan linear pada bidang datar (segitiga)31 Menentukan batasan tersebut dengan notasi pertidaksamaan (Pertidaksamaan linear satu variabel) Contoh kasus32 Menentukan penyelesaian PtLSV (Pertidaksamaan linear satu variabel) Pertidaksamaan linear33 Menentukan pertidaksamaan yang ekuivalen dengan pertidaksamaan yg dimaksud (Pertidaksamaan linear satu variabel) Pertidaksamaan linear satu variabel34 Menentukan panjang kaki dari segitiga tersebut (Pertidaksamaan linear satu variabel) Soal cerita tentang segitiga sama kaki35 Menyederhanakan bentuk aljabar terebut (Pertidaksamaan linear satu variabel) Pecahan bentuk aljabarplis, jawab secepat mungkin ​


Jawaban:

1. {1,2,3,4}

3. {2,3,4,5,6,7,8,9}

Penjelasan dengan langkah-langkah:

cuman bisa itu untuk lainnya itu soalnya belum lengkap,kayak anggota a nya apa gitu jadi nggak bisa di kerjain


5. tolong buatiin contoh soal cerita pertidaksamaan linear 2 variabel beserta penyelesaiannya


1/2(2p-6)≥2/3(p+4)
a.p≥_1                                    c.p≥17
b.p≥1                                     d.p≥-17


Video Terkait

Kategori matematika